Copied to
clipboard

G = C40.9C23order 320 = 26·5

2nd non-split extension by C40 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.9C23, D40:10C22, C20.60C24, C23.21D20, M4(2):19D10, Dic20:9C22, D20.23C23, Dic10.23C23, (C2xC8):5D10, (C2xC40):8C22, C4.73(C2xD20), C8:D10:13C2, C8.9(C22xD5), C20.239(C2xD4), (C2xC20).205D4, (C2xC4).157D20, (C2xM4(2)):5D5, D40:7C2:10C2, C4.57(C23xD5), C8.D10:13C2, C4oD20:17C22, (C2xD20):53C22, C40:C2:10C22, C5:1(D8:C22), (C10xM4(2)):5C2, C10.27(C22xD4), C2.29(C22xD20), C22.22(C2xD20), (C2xC20).798C23, (C22xC4).267D10, (C22xC10).120D4, (C2xDic10):64C22, (C5xM4(2)):21C22, (C22xC20).268C22, (C2xC4oD20):27C2, (C2xC10).64(C2xD4), (C2xC4).225(C22xD5), SmallGroup(320,1420)

Series: Derived Chief Lower central Upper central

C1C20 — C40.9C23
C1C5C10C20D20C2xD20C2xC4oD20 — C40.9C23
C5C10C20 — C40.9C23
C1C4C22xC4C2xM4(2)

Generators and relations for C40.9C23
 G = < a,b,c,d | a40=b2=1, c2=d2=a20, bab=a19, ac=ca, dad-1=a21, bc=cb, bd=db, cd=dc >

Subgroups: 1054 in 262 conjugacy classes, 107 normal (21 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D5, C10, C10, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, Dic5, C20, C20, D10, C2xC10, C2xC10, C2xC10, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C40, Dic10, Dic10, C4xD5, D20, D20, C2xDic5, C5:D4, C2xC20, C2xC20, C22xD5, C22xC10, D8:C22, C40:C2, D40, Dic20, C2xC40, C5xM4(2), C2xDic10, C2xC4xD5, C2xD20, C4oD20, C4oD20, C2xC5:D4, C22xC20, D40:7C2, C8:D10, C8.D10, C10xM4(2), C2xC4oD20, C40.9C23
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, D20, C22xD5, D8:C22, C2xD20, C23xD5, C22xD20, C40.9C23

Smallest permutation representation of C40.9C23
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 55)(42 74)(43 53)(44 72)(45 51)(46 70)(47 49)(48 68)(50 66)(52 64)(54 62)(56 60)(57 79)(59 77)(61 75)(63 73)(65 71)(67 69)(76 80)
(1 58 21 78)(2 59 22 79)(3 60 23 80)(4 61 24 41)(5 62 25 42)(6 63 26 43)(7 64 27 44)(8 65 28 45)(9 66 29 46)(10 67 30 47)(11 68 31 48)(12 69 32 49)(13 70 33 50)(14 71 34 51)(15 72 35 52)(16 73 36 53)(17 74 37 54)(18 75 38 55)(19 76 39 56)(20 77 40 57)
(1 78 21 58)(2 59 22 79)(3 80 23 60)(4 61 24 41)(5 42 25 62)(6 63 26 43)(7 44 27 64)(8 65 28 45)(9 46 29 66)(10 67 30 47)(11 48 31 68)(12 69 32 49)(13 50 33 70)(14 71 34 51)(15 52 35 72)(16 73 36 53)(17 54 37 74)(18 75 38 55)(19 56 39 76)(20 77 40 57)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,55)(42,74)(43,53)(44,72)(45,51)(46,70)(47,49)(48,68)(50,66)(52,64)(54,62)(56,60)(57,79)(59,77)(61,75)(63,73)(65,71)(67,69)(76,80), (1,58,21,78)(2,59,22,79)(3,60,23,80)(4,61,24,41)(5,62,25,42)(6,63,26,43)(7,64,27,44)(8,65,28,45)(9,66,29,46)(10,67,30,47)(11,68,31,48)(12,69,32,49)(13,70,33,50)(14,71,34,51)(15,72,35,52)(16,73,36,53)(17,74,37,54)(18,75,38,55)(19,76,39,56)(20,77,40,57), (1,78,21,58)(2,59,22,79)(3,80,23,60)(4,61,24,41)(5,42,25,62)(6,63,26,43)(7,44,27,64)(8,65,28,45)(9,46,29,66)(10,67,30,47)(11,48,31,68)(12,69,32,49)(13,50,33,70)(14,71,34,51)(15,52,35,72)(16,73,36,53)(17,54,37,74)(18,75,38,55)(19,56,39,76)(20,77,40,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,55)(42,74)(43,53)(44,72)(45,51)(46,70)(47,49)(48,68)(50,66)(52,64)(54,62)(56,60)(57,79)(59,77)(61,75)(63,73)(65,71)(67,69)(76,80), (1,58,21,78)(2,59,22,79)(3,60,23,80)(4,61,24,41)(5,62,25,42)(6,63,26,43)(7,64,27,44)(8,65,28,45)(9,66,29,46)(10,67,30,47)(11,68,31,48)(12,69,32,49)(13,70,33,50)(14,71,34,51)(15,72,35,52)(16,73,36,53)(17,74,37,54)(18,75,38,55)(19,76,39,56)(20,77,40,57), (1,78,21,58)(2,59,22,79)(3,80,23,60)(4,61,24,41)(5,42,25,62)(6,63,26,43)(7,44,27,64)(8,65,28,45)(9,46,29,66)(10,67,30,47)(11,48,31,68)(12,69,32,49)(13,50,33,70)(14,71,34,51)(15,52,35,72)(16,73,36,53)(17,54,37,74)(18,75,38,55)(19,56,39,76)(20,77,40,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,55),(42,74),(43,53),(44,72),(45,51),(46,70),(47,49),(48,68),(50,66),(52,64),(54,62),(56,60),(57,79),(59,77),(61,75),(63,73),(65,71),(67,69),(76,80)], [(1,58,21,78),(2,59,22,79),(3,60,23,80),(4,61,24,41),(5,62,25,42),(6,63,26,43),(7,64,27,44),(8,65,28,45),(9,66,29,46),(10,67,30,47),(11,68,31,48),(12,69,32,49),(13,70,33,50),(14,71,34,51),(15,72,35,52),(16,73,36,53),(17,74,37,54),(18,75,38,55),(19,76,39,56),(20,77,40,57)], [(1,78,21,58),(2,59,22,79),(3,80,23,60),(4,61,24,41),(5,42,25,62),(6,63,26,43),(7,44,27,64),(8,65,28,45),(9,46,29,66),(10,67,30,47),(11,48,31,68),(12,69,32,49),(13,50,33,70),(14,71,34,51),(15,52,35,72),(16,73,36,53),(17,54,37,74),(18,75,38,55),(19,56,39,76),(20,77,40,57)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222244444444455888810···101010101020···202020202040···40
size112222020202011222202020202244442···244442···244444···4

62 irreducible representations

dim1111112222222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D5D10D10D10D20D20D8:C22C40.9C23
kernelC40.9C23D40:7C2C8:D10C8.D10C10xM4(2)C2xC4oD20C2xC20C22xC10C2xM4(2)C2xC8M4(2)C22xC4C2xC4C23C5C1
# reps14441231248212428

Matrix representation of C40.9C23 in GL4(F41) generated by

21182618
41358
27373721
162211
,
34402327
773527
002512
003016
,
32000
03200
00320
00032
,
9002
09181
00320
00032
G:=sub<GL(4,GF(41))| [21,4,27,16,18,13,37,2,26,5,37,2,18,8,21,11],[34,7,0,0,40,7,0,0,23,35,25,30,27,27,12,16],[32,0,0,0,0,32,0,0,0,0,32,0,0,0,0,32],[9,0,0,0,0,9,0,0,0,18,32,0,2,1,0,32] >;

C40.9C23 in GAP, Magma, Sage, TeX

C_{40}._9C_2^3
% in TeX

G:=Group("C40.9C2^3");
// GroupNames label

G:=SmallGroup(320,1420);
// by ID

G=gap.SmallGroup(320,1420);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,570,80,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^40=b^2=1,c^2=d^2=a^20,b*a*b=a^19,a*c=c*a,d*a*d^-1=a^21,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<