metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C40.9C23, D40:10C22, C20.60C24, C23.21D20, M4(2):19D10, Dic20:9C22, D20.23C23, Dic10.23C23, (C2xC8):5D10, (C2xC40):8C22, C4.73(C2xD20), C8:D10:13C2, C8.9(C22xD5), C20.239(C2xD4), (C2xC20).205D4, (C2xC4).157D20, (C2xM4(2)):5D5, D40:7C2:10C2, C4.57(C23xD5), C8.D10:13C2, C4oD20:17C22, (C2xD20):53C22, C40:C2:10C22, C5:1(D8:C22), (C10xM4(2)):5C2, C10.27(C22xD4), C2.29(C22xD20), C22.22(C2xD20), (C2xC20).798C23, (C22xC4).267D10, (C22xC10).120D4, (C2xDic10):64C22, (C5xM4(2)):21C22, (C22xC20).268C22, (C2xC4oD20):27C2, (C2xC10).64(C2xD4), (C2xC4).225(C22xD5), SmallGroup(320,1420)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C40.9C23
G = < a,b,c,d | a40=b2=1, c2=d2=a20, bab=a19, ac=ca, dad-1=a21, bc=cb, bd=db, cd=dc >
Subgroups: 1054 in 262 conjugacy classes, 107 normal (21 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D5, C10, C10, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, Dic5, C20, C20, D10, C2xC10, C2xC10, C2xC10, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C40, Dic10, Dic10, C4xD5, D20, D20, C2xDic5, C5:D4, C2xC20, C2xC20, C22xD5, C22xC10, D8:C22, C40:C2, D40, Dic20, C2xC40, C5xM4(2), C2xDic10, C2xC4xD5, C2xD20, C4oD20, C4oD20, C2xC5:D4, C22xC20, D40:7C2, C8:D10, C8.D10, C10xM4(2), C2xC4oD20, C40.9C23
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C22xD4, D20, C22xD5, D8:C22, C2xD20, C23xD5, C22xD20, C40.9C23
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 20)(3 39)(4 18)(5 37)(6 16)(7 35)(8 14)(9 33)(10 12)(11 31)(13 29)(15 27)(17 25)(19 23)(22 40)(24 38)(26 36)(28 34)(30 32)(41 55)(42 74)(43 53)(44 72)(45 51)(46 70)(47 49)(48 68)(50 66)(52 64)(54 62)(56 60)(57 79)(59 77)(61 75)(63 73)(65 71)(67 69)(76 80)
(1 58 21 78)(2 59 22 79)(3 60 23 80)(4 61 24 41)(5 62 25 42)(6 63 26 43)(7 64 27 44)(8 65 28 45)(9 66 29 46)(10 67 30 47)(11 68 31 48)(12 69 32 49)(13 70 33 50)(14 71 34 51)(15 72 35 52)(16 73 36 53)(17 74 37 54)(18 75 38 55)(19 76 39 56)(20 77 40 57)
(1 78 21 58)(2 59 22 79)(3 80 23 60)(4 61 24 41)(5 42 25 62)(6 63 26 43)(7 44 27 64)(8 65 28 45)(9 46 29 66)(10 67 30 47)(11 48 31 68)(12 69 32 49)(13 50 33 70)(14 71 34 51)(15 52 35 72)(16 73 36 53)(17 54 37 74)(18 75 38 55)(19 56 39 76)(20 77 40 57)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,55)(42,74)(43,53)(44,72)(45,51)(46,70)(47,49)(48,68)(50,66)(52,64)(54,62)(56,60)(57,79)(59,77)(61,75)(63,73)(65,71)(67,69)(76,80), (1,58,21,78)(2,59,22,79)(3,60,23,80)(4,61,24,41)(5,62,25,42)(6,63,26,43)(7,64,27,44)(8,65,28,45)(9,66,29,46)(10,67,30,47)(11,68,31,48)(12,69,32,49)(13,70,33,50)(14,71,34,51)(15,72,35,52)(16,73,36,53)(17,74,37,54)(18,75,38,55)(19,76,39,56)(20,77,40,57), (1,78,21,58)(2,59,22,79)(3,80,23,60)(4,61,24,41)(5,42,25,62)(6,63,26,43)(7,44,27,64)(8,65,28,45)(9,46,29,66)(10,67,30,47)(11,48,31,68)(12,69,32,49)(13,50,33,70)(14,71,34,51)(15,52,35,72)(16,73,36,53)(17,54,37,74)(18,75,38,55)(19,56,39,76)(20,77,40,57)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,39)(4,18)(5,37)(6,16)(7,35)(8,14)(9,33)(10,12)(11,31)(13,29)(15,27)(17,25)(19,23)(22,40)(24,38)(26,36)(28,34)(30,32)(41,55)(42,74)(43,53)(44,72)(45,51)(46,70)(47,49)(48,68)(50,66)(52,64)(54,62)(56,60)(57,79)(59,77)(61,75)(63,73)(65,71)(67,69)(76,80), (1,58,21,78)(2,59,22,79)(3,60,23,80)(4,61,24,41)(5,62,25,42)(6,63,26,43)(7,64,27,44)(8,65,28,45)(9,66,29,46)(10,67,30,47)(11,68,31,48)(12,69,32,49)(13,70,33,50)(14,71,34,51)(15,72,35,52)(16,73,36,53)(17,74,37,54)(18,75,38,55)(19,76,39,56)(20,77,40,57), (1,78,21,58)(2,59,22,79)(3,80,23,60)(4,61,24,41)(5,42,25,62)(6,63,26,43)(7,44,27,64)(8,65,28,45)(9,46,29,66)(10,67,30,47)(11,48,31,68)(12,69,32,49)(13,50,33,70)(14,71,34,51)(15,52,35,72)(16,73,36,53)(17,54,37,74)(18,75,38,55)(19,56,39,76)(20,77,40,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,20),(3,39),(4,18),(5,37),(6,16),(7,35),(8,14),(9,33),(10,12),(11,31),(13,29),(15,27),(17,25),(19,23),(22,40),(24,38),(26,36),(28,34),(30,32),(41,55),(42,74),(43,53),(44,72),(45,51),(46,70),(47,49),(48,68),(50,66),(52,64),(54,62),(56,60),(57,79),(59,77),(61,75),(63,73),(65,71),(67,69),(76,80)], [(1,58,21,78),(2,59,22,79),(3,60,23,80),(4,61,24,41),(5,62,25,42),(6,63,26,43),(7,64,27,44),(8,65,28,45),(9,66,29,46),(10,67,30,47),(11,68,31,48),(12,69,32,49),(13,70,33,50),(14,71,34,51),(15,72,35,52),(16,73,36,53),(17,74,37,54),(18,75,38,55),(19,76,39,56),(20,77,40,57)], [(1,78,21,58),(2,59,22,79),(3,80,23,60),(4,61,24,41),(5,42,25,62),(6,63,26,43),(7,44,27,64),(8,65,28,45),(9,46,29,66),(10,67,30,47),(11,48,31,68),(12,69,32,49),(13,50,33,70),(14,71,34,51),(15,52,35,72),(16,73,36,53),(17,54,37,74),(18,75,38,55),(19,56,39,76),(20,77,40,57)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 1 | 1 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | D10 | D20 | D20 | D8:C22 | C40.9C23 |
kernel | C40.9C23 | D40:7C2 | C8:D10 | C8.D10 | C10xM4(2) | C2xC4oD20 | C2xC20 | C22xC10 | C2xM4(2) | C2xC8 | M4(2) | C22xC4 | C2xC4 | C23 | C5 | C1 |
# reps | 1 | 4 | 4 | 4 | 1 | 2 | 3 | 1 | 2 | 4 | 8 | 2 | 12 | 4 | 2 | 8 |
Matrix representation of C40.9C23 ►in GL4(F41) generated by
21 | 18 | 26 | 18 |
4 | 13 | 5 | 8 |
27 | 37 | 37 | 21 |
16 | 2 | 2 | 11 |
34 | 40 | 23 | 27 |
7 | 7 | 35 | 27 |
0 | 0 | 25 | 12 |
0 | 0 | 30 | 16 |
32 | 0 | 0 | 0 |
0 | 32 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
9 | 0 | 0 | 2 |
0 | 9 | 18 | 1 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
G:=sub<GL(4,GF(41))| [21,4,27,16,18,13,37,2,26,5,37,2,18,8,21,11],[34,7,0,0,40,7,0,0,23,35,25,30,27,27,12,16],[32,0,0,0,0,32,0,0,0,0,32,0,0,0,0,32],[9,0,0,0,0,9,0,0,0,18,32,0,2,1,0,32] >;
C40.9C23 in GAP, Magma, Sage, TeX
C_{40}._9C_2^3
% in TeX
G:=Group("C40.9C2^3");
// GroupNames label
G:=SmallGroup(320,1420);
// by ID
G=gap.SmallGroup(320,1420);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,570,80,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^40=b^2=1,c^2=d^2=a^20,b*a*b=a^19,a*c=c*a,d*a*d^-1=a^21,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations